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Abstract. The Arctic is warming at a faster rate compared to the globe on average, commonly referred to as Arctic amplifica-

tion. Sea ice has been linked to Arctic amplification and gathered attention recently due to the decline in summer sea ice extent.

Data assimilation (DA) is the act of combining observations with prior forecasts to obtain a more accurate model state. Sea ice

poses a unique challenge for DA because sea ice variables have bounded distributions, leading to non-Gaussian distributions.

The non-Gaussian nature violates Gaussian assumptions built into DA algorithms. This study configures different observing5

system simulated experiments (OSSEs) to find the optimal sea ice and snow observation subset for assimilation to produce the

most accurate analyses and forecasts. Findings indicate that not assimilating sea ice concentration observations while assimi-

lating snow depth observation produced the best sea ice and snow forecasts. A simplified DA experiment helped demonstrate

that the DA solution is biased when assimilating sea ice concentration observations. The biased DA solution is related to the

observation error distribution being a truncated normal distribution and the assumed observation likelihood is normal for the10

DA method. Additional OSSEs show that using a non-parametric DA method does not alleviate the non-Gaussian effects of

the sea ice concentration observations, and assimilating sea ice surface temperatures have a positive impact on snow updates.

Lastly, it is shown that perturbed sea ice model parameters, used to create additional ensemble spread in the free forecasts, lead

to a year-long negative snow volume bias.

1 Introduction15

Warming over the Arctic region, a phenomenon commonly referred to as Arctic amplification (Serreze and Francis, 2006),

has been identified in both observations (Serreze et al., 2009; England et al., 2021) and climate models (Holland and Bitz,

2003). Numerous studies have found this warming rate to be around twice as fast as the global average (Walsh, 2014; Jansen

et al., 2020; Yu et al., 2021). A recent study has found that Arctic amplification-related warming could be three-to-four times

faster than the global average, more than double the warming rate previously estimated (Rantanen et al., 2022). Projections20

of Arctic amplification rely heavily on the ability of coupled numerical models to represent each Earth-system component.

One important Earth-system component linked to Arctic amplification–the cryosphere–has gathered attention recently due to

the declining summer sea ice extent over the recent decades (Screen and Simmonds, 2010; Jenkins and Dai, 2021). During

the winter time, sea ice can act as an insulator trapping ocean heat, created from the absorbed shortwave radiation during the
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summer sea-ice loss season, within the ocean allowing for cooler winter time atmospheric temperatures (Chung et al., 2021).25

Additionally, snow cover on top of sea ice can impact seasonal sea ice evolution, growth, and melt (Holland et al., 2021).

Providing more accurate sea ice and snow states via data assimilation in our coupled Earth-system modeling frameworks could

help improve future projections of the climate and the processes related to Arctic amplification.

Data assimilation (DA) is the action of optimally combining information from prior forecasts with observations to improve

the current estimate of the state of any Earth-system component. The statistical methods used to optimally combine this infor-30

mation often have assumptions of gaussianity depending on the choice of the data assimilation method. One data assimilation

method that has commonly been applied in Earth-system problems is the ensemble Kalman filter (EnKF; Evensen 2003;

Houtekamer and Zhang 2016), which has Gaussian assumptions included in its original Kalman filter formulation (Kalman,

1960). These Gaussian assumptions can lead to biased solutions, when prior forecast distributions are non-Gaussian or er-

rors associated with the observations are also non-Gaussian. Common sea ice variables have both double and single bounded35

quantities (e.g., double bounded: sea ice concentration; single bounded: sea ice thickness) that lead to non-Gaussian distribu-

tions, which would violate Gaussian assumptions. Studies have investigated the performance of different EnKF formulations

(stochastic versus deterministic) under non-Gaussian conditions and found that while the stochastic formulation was more sta-

ble, both had biased solutions (Lawson and Hansen, 2004; Lei et al., 2010). Different ensemble data assimilation methods that

remove the Gaussian assumption have been proposed, however, many have only been tested in low-order models and could40

be potentially expensive in high-dimensional geophysical models (Pham, 2001; Anderson, 2010; Sakov et al., 2012b; Metref

et al., 2014). Here, instead of testing a new ensemble data assimilation method, we will conduct experiments to highlight the

impacts the different non-Gaussian sea ice variables can have during the data assimilation updates.

The application of data assimilation to sea ice problems is not a novel idea since this research topic has been investigated for

over two decades. Common sea ice descriptive quantities are concentration (e.g., the fraction of a grid cell covered with sea45

ice) and thickness (e.g., the sea ice surface extending down into the ocean). Previous studies have highlighted the importance

of initial conditions when trying to predict Arctic sea ice from the local to seasonal time scales, especially related to accurately

initializing sea ice thickness (Msadek et al., 2014; Day et al., 2014; Dirkson et al., 2017). While different data assimilation

techniques have been used to update sea ice state variables (Meier and Maslanik, 2003; Van Woert et al., 2004; Lindsay and

Zhang, 2006; Stark et al., 2008), numerous studies have tested updating sea ice state variables using the EnKF data assimilation50

method (Lisæter et al., 2003; Barth et al., 2015). These EnKF studies were tested both in a synthetic observation framework

referred to as observing system simulation experiments (OSSEs; Barth et al. 2015; Kimmritz et al. 2018; Zhang et al. 2018)

and using real observations from remote sensing platforms (Sakov et al., 2012a; Massonnet et al., 2015). These studies found

improvements in both sea ice analyses and their corresponding forecasts related to the spatial sea ice concentration field but

little improvement in sea ice thickness. Massonnet et al. (2015) improved the initialization of sea ice cover when updating sea55

ice thickness via a multivariate framework when assimilating only sea ice concentration observations. More recent studies have

tested the assimilation of other sea ice observations (e.g., sea ice thickness) and found further improvements to sea ice states

(Mathiot et al., 2012; Chen et al., 2017; Mu et al., 2018; Fiedler et al., 2022). While results from assimilating sea ice thickness

observations are positive, they contain large observation uncertainties because satellite remote sensing retrieval algorithms
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contain large uncertainties due to input parameters and instrument errors (Kwok and Cunningham, 2008; Tilling et al., 2016;60

Ricker et al., 2017). Further research is needed to determine how to properly handle the uncertainties when assimilating sea ice

observations.

This study uses different OSSEs to investigate how the non-Gaussian nature of different sea ice fields impacts the data

assimilation-generated sea ice analyses. This study will expand on previous research on sea ice data assimilation that was laid

out by Zhang et al. (2018). The OSSEs presented in this study will test different experimental setups to investigate if there is an65

optimal data assimilation setup for sea ice along with the associated snow cover on top. These experiments will investigate the

impacts of post-processing updates for snow on top of sea ice, different assimilated observation combinations, and different

data assimilation methods. This study will highlight the impacts of the non-Gaussian nature of certain sea ice variables on the

generation of sea ice analyses when using an EnKF data assimilation method. Section 2 describes the sea ice model and the

data assimilation experimental setup along with the description of the different OSSEs that were completed. Section 3 presents70

the results that were found from the different OSSEs. Section 4 discusses conclusions and future work on this research.

2 Methods and Experimental Setup

2.1 DART-CICE data assimilation system

For this study, the Los Alamos Sea Ice Model version 5 (CICE5; Hunke et al. 2015) is used to integrate the analyses forward in

time while using an ensemble Kalman filter (EnKF) data assimilation technique to generate analyses. The Data Assimilation75

Research Testbed (DART; Anderson et al. 2009) software was used to implement the EnKF. Hereafter, we refer to this modeling

configuration as CICE-DART. The data assimilation settings follow closely to the optimal settings Zhang et al. (2018) found

while the experimental setups will be different.

2.1.1 DART

The data assimilation technique used in this study is the ensemble adjustment Kalman filter (EAKF; Anderson 2001), which is80

a modified version of the Kalman filter (Kalman, 1960) and a variation of the deterministic ensemble square-root filter (Tippett

et al., 2003). The EAKF combines observations with an ensemble of short-term model forecasts over a specific observation

window to produce an ensemble of accurate estimate of the sea ice state. One unique aspect of the EAKF is it allows for the

use of a flow-dependent background-error covariance, which differs from a static background-error covariance. Additionally, a

non-parametric rank histogram filter (RHF, filter option 8 in DART; Anderson 2010) is tested to compare with EAKF results.85

While the RHF can represent non-Gaussian priors and arbitrary likelihoods for observed variables. Additionally, the RHF can

be modified to work with bounded quantities (Anderson, 2020, 2022), however, that application is not applied in this study. To

reduce sampling errors due to limited ensemble member size, horizontal localization was applied. A Gaspri-Cohn fifth order

polynomial was applied in the horizontal directions to limit observation updates within a specified cutoff radius of 0.05 (i.e.,

∼320 km; Gaspari and Cohn 1999). Adaptive prior covariance inflation was applied to eliminate potential issues related to90
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poor representation of model errors by “inflating" the prior background fields, increasing the variance by pushing ensemble

members away from the ensemble mean (Anderson, 2007). Inflation damping is set to 0.9 to help control the growth of the

inflation factor for the different state model variables.

2.1.2 CICE

CICE5 is the sea ice component within the Community Earth System Model (CESM; Danabasoglu et al. 2020) that is used95

to make projections of the climate. CICE5 simulates the evolution of sea ice and snow as a result of thermodynamic and

dynamical processes using a ice thickness distribution. The evolution of sea ice thickness, which is represented by the product

of sea ice volume and sea ice area, is accomplished by partitioning the sea ice pack distribution within a grid cell into multiple

thickness categories (Lipscomb, 2001). For this study, there are five categories with lower bounds of 0, 0.64, 1.39, 2.47, 4.57

m. Respecting the category bounds provides an unique challenge during the data assimilation step when updating sea ice area100

and sea ice volume. Snow depth is also partitioned into the five categories. Each thickness category is divided into multiple

layers (both sea ice and snow if present) to represent the evolution of sea ice temperature, salinity, and enthalpys related to

sea ice and snow. CICE was coupled to a slab ocean model (SOM) that provides the ocean forcing in the form of annually

periodic, prescribed ocean forcing data (e.g., sea surface temperatures, ocean heat fluxes). The atmospheric forcing data comes

from the Community Atmosphere Model version 6 (CAM6)/Data Assimilation Research Testbed ensemble reanalysis (Raeder105

et al., 2021) for the time period of interest. Default namelist settings were used in this study (Hunke et al., 2015) except for

perturbing several input CICE parameters which will be discussed more in the next section.

2.2 Perfect model OSSEs

Given the uncertainties and potential biases of sea ice thickness and snow-depth observations, this study applies perfect

model OSSEs to investigate non-Gaussian impacts. Each ensemble consists of 80 CICE5 members since there are 80 dif-110

ferent CAM6/DART reanalysis atmospheric forcing files. Each CICE5 ensemble member uses the same SOM forcing. To

increase CICE5 ensemble spread, three different parameters were perturbed that impact albedo, heat transfer through snow and

the ability to move sea ice within the ocean. Perturbed parameters are the standard deviation of the dry snow grain radius (Rsnw),

the thermal conductivity of snow (ksnw) and the neutral ocean-ice drag coefficient (dragio). These three parameters were chosen

because they are among the top parameters to drive variability within CICE5 in both summer and winter (Urrego-Blanco et al.,115

2016). To reach a spun-up equilibrium sea ice and snow state, a single member is run for 40 years using periodic atmospheric

forcing for year 2012. To build our 80 member ensemble, we first used only the 80 different atmospheric forcings to cycle over

2012 for 10 years to build in variability related to the atmosphere. Then, each member is run for an additional 15 years, cycling

over 2012, using the distinct atmospheric forcing and parameter set to generate free forecasts that can be used as a reference

case (Fig. 1). One of the free forecast members is chosen as the simulated “truth." For this study, the free forecast ensemble120

mean is negatively biased compared to the truth member for the different sea ice and snow characteristics. The free forecasts

will provide a reference for comparison with the different data assimilation experiments.
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Since satellites can not retrieve the multi-category model quantities, aggregate synthetic observations are generated from

the truth member to produce sea ice concentration (SIC), sea ice thickness (SIT), snow depth (SNWD), and sea ice surface

temperature (SIST). SIC is just the sum of the concentration values in the different thickness categories. SIT is computed125

by summing the sea ice volumes in the different thickness categories than dividing by the aggregated sea ice concentration.

SNWD is computed in the same fashion as SIT except using summed snow volumes. SIST is the concentration weighted mean

temperature across the different thickness categories on the surface of the sea ice. Normally, synthetic observations are created

by adding a draw from a normal distribution with zero mean and specified observation error standard deviation. This method

can be used to create synthetic sea ice surface temperatures. However, sea ice and snow quantities have both single (SIT,130

SNWD) and double (SIC) bounds in their representation. Because of this, we will use a single (SIT,SNWD) and double (SIC)

truncated normal distribution when generating the synthetic observations. The observation error standard deviation, which

follows those found in Zhang et al. (2018), is 15% of the true values of SIC and 0.1 m for SIT. The observation error standard

deviation is 10% of the true values of SNWD (Rostosky et al., 2020) and 1.5◦C for SIST (Hall et al., 2015). The locations for all

synthetic observation types were based on 10-second CryoSat-2 locations, which provides a realistic observational network for135

testing (Fig. 2). The multi-category model variables that are updated via the data assimilation or post-processing are AICEN,

VICEN, and VSNON, which represent sea ice concentration, sea ice volume, and snow volume. When those multi-category

model variables are summed up over the different categories, they are referred to as SIC, VICE, and VSNO.

Six different experiments were completed to test different observation combinations, data assimilation techniques, and post-

processing updates (Table 1). Experiment 1 is an extension of the work completed by Zhang et al. (2018) where they only140

allowed observation increments to update the sea ice area in the different categories while updating the sea ice snow volume

via post-processing. In experiment 1, we allow sea ice concentration and volume to be updated by SIC and SIT observations

while updating snow volume via post-processing. The equation for post-processing snow volume (VSNON) updates in the

different categories is the following:

VSNONposterior = AICENposterior× hsnonprior, (1)145

where AICEN is the sea ice concentration in the different categories and hsnon are the category-based snow thickness. In

experiment 2, the post-processing snow volume updates are removed and assimilation of SNWD is included in the observation

subset. To test the non-Gaussian effects of SIC observations, experiment 3 only assimilates SIT and SNWD while allowing

the sea ice concentration, sea ice volume and snow volume state variables to be updated from the observation increments.

Experiment 4 investigates the impacts of using a non-parametric data assimilation method, the rank histogram filter, when150

working with the non-Gaussian sea ice and snow variables in the CICE model. Experiment 5 investigates the impacts of having

sea ice thickness and snow depth output from CICE instead of having the forward operators within DART compute these

quantities. This arises from the fact that prior inflation is applied, which can push either the sea ice concentration or volume

below the zero bound. Since computing sea ice thickness or snow depth is the division of either sea ice or snow volume by the

sea ice area, this could lead to shuffling of the distribution if values become negative. Lastly, experiment 6 tests the impacts of155

assimilating additional SIST observations to further improve the updates of sea ice states along with snow states.
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Due to the bounds related to sea ice and snow state variables, there are different conditions when special treatment is needed

to ensure the respected bounds are met. SIC (summed sea ice concentration across the categories) must remain between 0 and

1. Similarly, sea ice and snow volumes (summed across the categories) must remain above zero. If negative values occur for

SIC or the volumes, all categories are set to zero. Additionally, category-based sea ice concentration values are scaled if the SIC160

exceeds one after the assimilation updates. In the event SIC exceeds one the scaling of the category-based sea ice concentration

is as follow:

squeeze =
1.0
SIC

,

AICEN = AICEN ∗ squeeze, (2)

where squeeze is the factor by which the individual category-based AICEN values are adjusted. In the case where SIC is within

the bounds but individual categories become negative, those categories are set to zero and the remaining non-zero categories165

are reduced proportionally to compensate for the negative amount. Lastly, special care is taken to account for the cases where

SIC is greater than zero but sea ice volume become zero due to the assimilation updates. A new sea ice volume is computed

for the category, to replace the zero value, by multiplying the mid-point sea ice thickness by the sea ice concentration for the

associated category.

The same initial conditions used to generate the free forecasts were used for the experiments listed in Table 1. The free170

forecasts provide a reference to the amount of variability that was generated during the spin-up process (Fig. 1). All experiments

were initialized on 1 January 2013 and the cycling period was for the entire year 2013. In all experiments, observations are

assimilated at a daily interval.

2.3 Model Verification Metrics

Total sea ice area, sea ice volume and snow volume will be forecast quantities used to evaluate CICE-DART performance over175

the cycling period. The bias of the forecast quantities is defined as the ensemble mean minus the truth and will be calculated

daily. Total sea ice area was chosen as it provides the actual area covered by sea ice compared to the common Arctic sea ice

extent is the total area where the sea ice concentration exceeds 15%. Total sea ice area will allow for better evaluation of the

actual sea ice concentration values since they are used in the calculation compared to sea ice extent. Additionally, mean spatial

biases will be computed for SIC, sea ice volume and snow volume over different cycling periods. Welch’s t-test will be applied180

to test for significant biases (Welch, 1947).

Mean absolute bias (MAB) and mean square error (MSE) will be computed for total sea ice area, sea ice volume and snow

volume for additional performance evaluation. The integrated ice-edge error (IIEE) is another forecast metric that will be

applied to evaluate sea ice coverage in this study (Goessling et al., 2016). IIEE will evaluate potential sea ice edge differences

between the ensemble mean and the truth. IIEE is more suitable for user forecast evaluation of the sea ice edge compared to185

the traditional sea ice extent (Tietsche et al., 2014). The IIEE is the sum of the area grid boxes where the ensemble mean and

the truth disagree on whether sea ice is present (over-prediction) or not (under-prediction). Like in previous studies computing

IIEE, a SIC threshold of 15% is used to determine whether a grid cell is identified as having sea ice (Goessling and Jung,
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2018; Zampieri et al., 2018). An attractive feature of IIEE is that it can be decomposed into an absolute extent error (AEE) and

a misplacement error (ME). AEE is the absolute difference (|over-prediction - under-prediction|) between predictions, which190

can help determine whether there is a bias for over or under predicting sea ice coverage. MEE is the misplacement error (2

× min(over-prediction,under-prediction)) reflecting whether there is too much sea ice in one location and too little in another.

IIEE along with AEE and ME will be computed daily. A Welch’s t-test was used to determine whether there were significant

differences between MAB, MSE, and IIEE values between experiments. Lastly, Spearman correlations are computed between

the perturbed parameters and different CICE model output.195

3 Results and discussion

3.1 Optimization of sea ice and snow data assimilation

In experiments 1–3 investigate which assimilated observation subset produces the most accurate forecasts for both sea ice

and snow. Daily biases of total sea ice area, sea ice volume and snow volume are computed throughout the cycling period

to compare the performance of the experiments with the truth and free forecasts (Fig. 3). For experiment 1, SIC and SIT200

observations are assimilated which provides updates to the prognostic sea ice state variables (AICEN and VICEN) while the

prognostic snow state variable (VSNON) is updated via post-processing. Compared to the free forecast, experiment 1 performs

better for both total sea ice area and sea ice volume. However, total sea ice area and sea ice volume were negatively biased from

the start of the melt season in May until the re-freeze in September. Total snow volume for experiment 1 is comparable to the

free forecasts. This means the post-processing updates for the snow state variable are not as accurate compared to the sea ice205

state variables, which are updated directly from the multivariate data assimilation step. Experiment 2 assimilates snow depth

observations so no post-processing is performed for snow. While there is little impact on biases associated with the sea ice

quantities, the biases are reduced for total snow volume throughout the cycling period with smaller bias than the free forecast.

Experiment 3 removed SIC as an assimilated observation, which leaves only SIT and SNWD observations that are assimilated.

For sea ice area and sea ice volume, the negative biases during the summer are near zero. Improvements in total snow volume210

for experiment 3 are isolated to the start of the melt season, however, the biases are similar to the other experiments after

this period. Regardless of these improvements, total snow volume is negatively biased throughout the entire cycling period for

experiments where SNWD observations are assimilated. Removing SIC observations from the assimilated observation subset

eliminates a non-Gaussian component during the assimilation step, which could be the driving factor for the poor forecasts in

experiments 1 and 2.215

Temporal forecast metrics are computed over the cycling period to pin-point which experiment is more accurate (Fig. 4).

Experiments 1 and 2 have the lowest total IIEE and are significantly different from the free forecast and experiment 3. This

means that experiments 1 and 2 provide a more accurate sea ice coverage over the cycling period. This might seem inconsistent

since experiment 3 daily biases were smaller. Sea ice area MSE and MAB for experiment 3 are lower and significantly different

than the other experiments and the free forecast. This means removing the SIC observations provided a more accurate forecast220

of the sea ice area, however, this did have a negative impact on predicting the sea ice edge in experiment 3. This indicates
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that the SIC observations play an important role in maintaining the sea ice edge close to the truth. Additionally, all experi-

ments perform better for sea ice volume compared to the free forecast, with experiment 3 being the most accurate. For snow

volume, experiment 1 is not statistically better than the free forecast, meaning post-processing snow updates is not an optimal

method. Once again, experiment 3 performs the best for snow volume even though SIC observations are not assimilated. While225

not assimilating SIC observations improves most forecast metrics, it is obvious that these observations should be crucial for

representing the sea ice edge accurately.

While experiment 3 provided the most accurate forecasts for the aggregated quantities, like total sea ice area, it is unclear

where those improvements occurred spatially over the Arctic at the start of the melt season. To gain more insight on the

improved results from experiment 3, May-through-June averaged spatial biases of SIC, VICE and VSNO are computed for230

the free forecast and each experiment (Fig. 5). For SIC, there are significant biases for the free forecast where the SIC values

are too large over the central Arctic and too small near the sea ice marginal zone. Experiments 1 and 2 show predominantly

significant negative biases over the sea ice for SIC while experiment 3 has reduced the spatial biases to near zero. The negative

SIC spatial bias over the central Arctic explains why the total sea ice area for experiments 1 and 2 performed poorly compared

to experiment 3. However, there are areas of larger bias value near the sea ice margin for experiment 3 where it was less accurate235

representing the sea ice edge, according to total IIEE. While all experiments reduced the magnitude of the VICE spatial bias,

there is still an overall significant negative bias for experiments 1 and 2. The spatial biases for experiment 3 are near zero and

there are essentially no areas of significant bias. For VSNO, there is a big difference between the spatial biases for experiments

1 and 2, highlighting the benefits of assimilating SNWD observation over post-processing VSNO updates. In experiment 3,

there is an overall reduction in the significant negative biases over the central Arctic compared to experiment 2. In experiments240

1 and 2, the SIC observations have a negative impact on both the observed and non-observed model state variables. Removing

SIC observations from the assimilated observation subset reduced the spatial coverage of significant biases for all state model

variables.

An analysis increment (AI) indicates how the observations are pushing or pulling state model variables. Evaluating AIs

will help determine how the SIC observations impact the different data assimilation experiments. For experiment 3, there is245

a reduction in the magnitude of the spatial AIs at the start of the melt season compared with experiments 1 and 2 (Fig. 6A). The

AI reduction is mainly located over the central part of the Arctic, where SIC values for all ensemble members are close to 1.

This means the assimilation of the SIC observations leads to low biased SIC analyses. The SIC AIs become more similar across

the experiments as one moves away from the central Arctic toward the sea ice marginal zone. The AI patterns and magnitudes

near the sea ice edge for experiment 3 are different than one might expect due to the increase in IIEE. However, these AIs250

are averaged from May through June, so the IIEE might be picking up on sea ice edge errors at different times throughout the

cycling period. It is a similar story for the VICE, where there is a reduction in the AI magnitude over the central Arctic for

experiment 3 compared to experiments 1 and 2 (Fig. 6B). For VSNO AIs, there is a flip in the sign between experiments 1 and

2 (Fig. 6). The negative VSNO AIs in experiment 1 are connected to the SIC AIs due to the equation for the post-processing

(Equation 1). Since SIC AIs are mainly negative over the central Arctic, this would also lead to negative VSNO AIs over this255

region due to the post-processing method. The differences in VSNO AIs between experiments 2 and 3 are small, meaning
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that the removal of SIC observations from the assimilated subset does not have a negative impact on the adjustments. Overall,

experiment 3 provides the optimal setup for sea ice and snow data assimilation. Even with a slightly higher IIEE, the removal

of the SIC observations from the assimilate observation subset did provide better results. Further investigation is needed to

understand the reason behind the persistent negatively biased total snow volume compared to the truth.260

3.2 Simplified Data Assimilation Experiment

To further investigate the poor results when assimilating SIC observations, a simplified data assimilation experiment is setup.

This simplified DA experiment will mimic SIC during the wintertime over the pole, meaning the truth SIC does not change

over time. With a constant truth value that does not change, observations are created that will be assimilated over the cycling

period. The truth SIC value is 0.99 and it’s corresponding observation error uses the same method as the OSSE experiments.265

Two different initial ensemble distributions are created; small ensemble spread (standard deviation: 0.0007) and large ensemble

spread (standard deviation: 0.0142). When prior inflation is tested, it will be set to a constant inflation factor set of 2. All other

data assimilation settings (e.g., filter type EAKF) are the same as those in the experiments. Four mini experiments are completed

using a combination of the different initial ensemble spreads and prior inflation either turned off or on. The experiments

are cycled 5,000 times, assimilating the observations generated from the truth using a truncated normal distribution. These270

experiments will work with SIC directly, meaning there are no thickness categories as in CICE. This means that the mapping

between observation space to state space is linear, further simplifying this data assimilation experiment.

For all experiments, the prior ensemble mean drifts away from the true value and moves toward the average observation

value over the cycling period (Fig. 7). The rate at which the prior ensemble mean moves toward the average observation

value depends on both the initial ensemble spread and if prior inflation is applied. For small initial ensemble spread, the prior275

ensemble mean drifts away from the true value faster with prior inflation compared to when prior inflation is turned off (Fig.

7A, B). While it takes many cycling times, the prior ensemble mean is pulled below the true value without prior inflation for

a small initial ensemble spread. When the initial ensemble spread is increased, the prior ensemble mean moves away from

the truth at an increased rate with and without prior inflation (Fig. 7C, D). This effect is similar to the results in experiment 2

related to total sea ice area. During the wintertime, SIC ensemble variance is small over most of the ice pack, which is why280

data assimilation has little impact (similar to results in Fig. 7A). However, once the melt season starts, there is an increase

in the SIC variance. Combining the increased SIC variance with prior inflation likely leads to a negatively biased solution in

experiment 2 (Fig. 3A).

The fact that the prior ensemble mean moves away from the true value regardless of the initial ensemble variance demon-

strates that our data assimilation solution is biased. This is due to the fact that our observation error distribution is a truncated285

normal while the observation likelihood for the EAKF is assumed to be normal. Applying a non-Gaussian distribution for

observation errors while using a Gaussian observation likelihood can lead to erroneous observation impacts, biasing analysis

estimates (Pires et al., 2010; Fowler and Jan Van Leeuwen, 2013). The effects of prior inflation exacerbate the bias by increas-

ing prior variance, which weights the observations even more. A better choice might be an optimal combination of distributions

representing the prior state and the observation errors more appropriately, as laid out in Anderson (2022).290
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3.3 Further discussion on sea ice data assimilation

The removal of SIC as an assimilated observation improved forecasts of total sea ice, however, forecasts of the sea ice edge

were less accurate according to the total IIEE. This suggests that, near the sea ice margin, there are benefits to assimilating

SIC observations and that SIT observations provide poor multivariate updates for AICEN. Three additional experiments were

completed to investigate the sea ice impacts when using a non-parametric RHF, modified forward operators for thickness295

observations, and assimilation of SISTs. Each additional experiment is compared with experiment 3. Experiment 4 performs

worse than experiment 3 during the summer according to daily biases of total sea ice area, sea ice volume and snow volume (Fig.

8). The use of the non-parametric RHF in experiment 4 did not handle the SIC observations better. Compared to experiment

3, experiments 5 and 6 have similar daily biases for total sea ice volume and snow volume, however, not for total sea ice area.

Experiments 5 and 6 have persistent, larger daily biases during the summer compared to experiment 3. There does appear to be300

a slight improvement in total snow volume for experiment 6 compared to compared experiment 3 during May, however, there

are still negative biases throughout the cycling period.

Experiment 4 does the best job representing sea ice coverage since its total IIEE is the lowest and it is significantly different

from the other experiments (Fig. 9). Experiment 4 assimilates SIC observations, which is likely why it is similar to our previous

result from experiment 2 (compare Fig. 4A with Fig. 9A). Experiments 5 and 6 essentially have the same total IIEE, which305

are statistically worse than experiment 3. The modification to the forward operator along with assimilating SIST observations

poorly represents sea ice coverage. For total sea ice area and sea ice volume, experiment 4 has the largest aggregated errors that

are significantly different from the other experiments (Fig 9B, C). This result is similar to experiment 2, where SIC observations

were assimilated. Experiment 3 does the best job representing the total sea ice area and sea ice volume. However, one thing that

needs to be mentioned is that experiment 6 uses the modified forward operator. Since the sea ice statistics appear very similar310

between experiments 5 and 6, the modified forward operator could be the reason why the results for experiment 6 are worse

than those for experiment 3.

Evaluating SIC over the start of the melt season (May-through-June) reveals that experiment 4 has mostly significant negative

biases compared to the truth (Fig. 10A). This result is similar to experiment 2, where the EAKF is used instead of the RHF.

Compared to experiment 3, there are larger, positive SIC biases for experiments 5 and 6 near the sea ice margin. These biased315

areas are mainly located in the Baffin Bay, Greenland Sea and Barents Sea. The poor representation of the sea ice margin zone

for experiments 5 and 6 could explain the larger total IIEE compared to experiment 3. Experiment 4 has significant negative sea

ice volume biases over most of the sea ice pack (Fig. 10B). Again, this agrees with the spatial biases for experiment 2 over this

period, further showing that switching to the RHF over the EAKF did not help alleviate the impacts of the SIC observations.

The spatial biases of sea ice volume for experiments 5 and 6 closely resemble those found in experiment 3, except near the320

sea ice margin. The modified forward operator might introduce poor sea ice margin updates without the constraint of the SIC

observations in this region. Overall, switching the data assimilation filter type did not fix the issues related to assimilating

SIC observations and there are potential issues with using the modified forward operator near the sea ice margin. However,
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the spatial biases are similar over most of the central Arctic meaning more investigating is needed to determine the negative

impacts of the modified forward operator.325

3.4 Further discussion on snow data assimilation

Regardless of the experiment, the daily biases for snow volume are negative throughout much of the entire cycling period com-

pared to the truth (Figs. 3C). Even the daily biases for the additional experiments are mainly negative throughout the cycling

period (Fig. 8C). The use of the RHF in experiment 4 does not improve the representation of snow volume, while experi-

ments 5 and 6 are similar to experiment 3. For snow volume, experiment 6 is performing better than experiment 3 throughout330

May. Experiment 6 has smaller MSE and MAB values for snow volume and is significantly different from experiment 3 (Fig.

9C). This means assimilating additional SIST observations provided a more accurate update to snow volume. While mainly

negative, the magnitude of the spatial biases are larger with more areas with significant biases for experiment 4 (Fig. 10C).

Even though experiment 6 had the lowest MSE and MAB for snow volume, it is hard to identify any particular spatial region

over the sea ice where the biases are closer to zero compared to the other experiments (Fig. 10C).335

Further investigation is needed to fully understand why the snow volume is negatively biased regardless of the experimental

setup. Experiment 3 will be further evaluated to investigate the reason for the low bias in snow volume. Since the ocean

forcing is the same across ensemble members, the atmospheric forcing is evaluated for the ensemble mean. Breaking down

the individual atmospheric heat fluxes, the shortwave radiation has the largest bias compared to the truth (Fig. 11A). The other

atmospheric heat fluxes have smaller and near zero biases for most of the cycling period. The positive shortwave heat flux bias340

occurs during sunrise over the Arctic, which also corresponds to the period in experiment 3 where the daily biases for snow

volume are the largest (Fig. 3C). The spread in the absorbed shortwave heat flux grows during the onset into summer, which is

during the start of the melt season for snow (Fig. 11B). The ensemble on average has absorbed too much incoming shortwave

radiation compared to the truth. Interestingly, the spread of the absorbed shortwave heat flux collapses at the start of July, when

the snow on top of the sea ice would be at it’s minimum (Fig. 3C). One feature that can impact absorbed shortwave radiation345

and is connected to snow would be surface albedo (Fig. 11C). During the same period, the spread in absorbed shortwave heat

flux increases and there is an increase in the surface albedo spread. The spread in the surface albedo then collapses, like the

incoming shortwave radiation heat flux, near the start of July. The surface albedo is on average too small compared to the truth,

which could be the reason for the positive bias in the absorbed shortwave radiation. Lastly, the ensemble members almost

appear sorted, for both absorbed shortwave radiation and mean surface albedo, hinting that there is something systematic350

driving these quantities.

One potential reason that could be driving the negative biases found for the ensemble mean snow volume is the snowfall

originating from the atmospheric forcing file for the truth member is an outlier. This does not appear to be the case when

comparing daily biases of snowfall for the ensemble mean (Fig. 11D). The snowfall biases for the ensemble mean are near

zero and fluctuate about the zero line, meaning there is no clear systematic difference from the truth. One issue that has not355

been discussed is the role the CICE perturbed parameters could be playing in the snow evolution. Perturbed parameters have

been used over the years to create more spread in atmospheric models (Murphy et al., 2004; Stainforth et al., 2005; Christensen
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et al., 2015; Orth et al., 2016), where the system is more chaotic. However, the impact the perturbed parameters would have

on a less-chaotic system like the cryosphere is unclear. Concerning total snow volume, there are larger and more significant

correlations between the Rsnw parameter compared to the other perturbed parameters throughout the cycling period (Fig. 12A).360

The positive correlations mean that larger standard deviations of dry snow grain radius lead to more total snow volume. This

connection is a result of the larger standard deviations of dry snow grain radius resulting in a higher albedo, reflecting more

incoming shortwave radiation (Hunke et al., 2015). Looking at snow melt, there are negative and significant correlations during

the melt season for the Rsnw parameter, while the other parameters have little significant correlations (Fig. 12B). This means

there is more snow melt for lower standard deviations of dry snow grain radius, resulting in more absorbed shortwave radiation365

due to a lower surface albedo. The Rsnw parameter for the truth member is located above the 75th percentile compared with

the rest of the perturbed Rsnw parameters (Fig. 12C). Even with snow assimilation updates, the impact from the perturbed Rsnw

parameter might play a larger role in snow evolution. Due to this fact, it is not surprising to find that the ensemble mean is

negatively biased compared to the truth for total snow volume.

4 Conclusions370

To advance our understanding of the global climate, it is critical to improve our representation of the different underlying Earth-

system components within our coupled numerical climate models. One important Earth-system component–the cryosphere–has

gathered recent attention due to declining Arctic summer sea ice and the link back to Arctic amplification. Data assimilation

methods, like the ensemble Kalman filter (EnKF), are one way to improve the representation of sea ice states by exploiting

information from observations taken from satellites. However, the formulation of the EnKF has Gaussian assumptions and375

most state variables representing sea ice have some form of boundedness, which can lead to non-Gaussian distributions near

those bounds. This study investigates the data assimilation impacts of the non-Gaussian nature of sea ice and snow variables on

the generation of analyses within different observing system simulation experiments (OSSEs). The different OSSEs presented

in this study will test for the optimal setup for sea ice and snow data assimilation when dealing with non-Gaussian states.

In this study, a sea ice model called CICE is coupled to the ensemble data assimilation software provided by DART to obtain380

a sea ice modeling system called CICE-DART. CICE-DART is used to conduct OSSEs to test different data assimilation con-

figurations. Six different experiments were completed to test different observation combinations, data assimilation techniques,

and post-processing updates (Table 1).

Experiments 1–3 explore the impacts different assimilated observation subsets have on generating the most accurate forecasts

for both sea ice and snow states. According to the daily biases and aggregated statistics, experiment 3 is more accurate, when385

compared to the truth, for sea ice area, sea ice volume, and snow volume. This highlights the negative impacts that SIC

observations have on forecasts when they are assimilated in experiments 1 and 2. Doubly bounded SIC observations can

impose non-Gaussian effects on both during the summer and winter. Early springtime SIC truth values are still close to one,

maximizing their observation error (15% of the truth value), which leads to observations being drawn further below the truth

due to the bound at one. Additionally, prior spread increases both due to the start of springtime melt and prior inflation.390
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Combining the low biased observations with the increase in prior spread leads to an enhancement of the non-Gaussian effects

during the early springtime. Interestingly, SIC observations do provide positive updates in the sea ice margin, shown by total

IIEE being lower in experiments 1 and 2. Due to positive updates in the sea ice margin, it would be optimal to assimilate SIC

observations within the data assimilation system.

To better understand the assimilation impacts due to the SIC observations, a simplified data assimilation experiment is com-395

pleted. This simplified experiment mimics central Arctic SIC during the winter time, meaning the truth does not change. The

generation and assimilation of SIC observations followed the same setup as the CICE-DART experiments. In each simplified

experiment, the prior ensemble mean moves away from the truth and closer to the average observation value during the cy-

cling period. The rate at which the prior ensemble mean moved away from the truth depended on the initial ensemble size and

whether prior inflation was used. These experiments verified that near a bound, the performance of the EAKF is suboptimal. We400

believe the suboptimal performance is linked back to using a truncated normal distribution as the observation error distribution

while the observation likelihood for the EAKF is assumed to be normal. Future projects focusing on sea ice data assimilation

might want to consider a different choice for the observation likelihood specification, similar to those laid out in Anderson

(2022).

Additional OSSEs are performed to further investigate potential data assimilation improvements for sea ice (Table 1). A non-405

parametric RHF was tested since it was developed for non-Gaussian situations. The results showed little improvement over the

EAKF when assimilating SIC observations. This is likely linked back to the RHF making some non-parametric assumptions on

the tails and an assumed normal likelihood when the distribution is not bounded. :The modification to the forward operators did

not improve the sea ice data assimilation, especially related regarding sea ice edge errors. This could mean that there are few

instances of shuffling the sea ice thickness distribution due to the prior inflation. Additionally, the multivariate update between410

sea ice thickness observations and sea ice area might be the reason for the increase in sea ice edge errors. Lastly, assimilating

SISTs did not lead to increased skill for sea ice variables. The correction between the SISTs and sea ice model variables might

not be significant, leading to little improvement.

Evaluation of the additional OSSEs are performed to investigate their impact on snow updates. The improvements associated

with using the non-parametric RHF over the EAKF were small for snow volume. This means that the non-Gaussian impacts415

from the SIC observations were negative on snow volume updates. Additionally, the modified forward operators have little

impact on snow volume updates. However, there is a slight improvement in the snow volume when SISTs are assimilated. This

improvement occurred during May and not over a specific area of the sea ice. This could mean the connections between SISTs

and snow are more significant than compared to sea ice, where the impacts were less impactful. Regardless, all additional

experiments still experienced a negative bias throughout the entire cycling period. Further investigation revealed that one of420

the perturbed parameters could be driving the negative bias for snow volume. Correlations were larger and significant between

snow variables and the representation of the dry snow grain radius size (Rsnw) within our ensemble. Due to the random choice

of the Rsnw parameter for the truth member, it is likely the reason the ensemble mean is negatively biased for snow volume.

Future work will further investigate how to properly assimilate SIC observations. Due to their positive impact on the sea

ice margin zone, an experiment could be proposed where only SIC observations are assimilated in that remote location. Addi-425
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tionally, further investigation is needed to test the use of more sophisticated data assimilation methods that accurately handle

non-Gaussian distributions. Lastly, supplementary OSSE experiments could be completed with a different ensemble member

chosen as the truth to further understand the impacts the perturbed parameters have on representing snow volume. These addi-

tional experiments would further help us understand the optimal data assimilation setup for representing sea ice and snow in

climate analyses.430
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Table 1. List of CICE-DART OSSEs with the different configurations.

Experiments Assimilated

Observations

Modified Forward

Operator

Postprocessed

States

Assimilation

Algorithm

State Vector

Exp. 1 SIC,SIT No VSNON EAKF AICEN,VICEN

Exp. 2 SIC,SIT,SNWD No — EAKF AICEN,VICEN,VSNON

Exp. 3 SIT,SNWD No — EAKF AICEN,VICEN,VSNON

Exp. 4 SIC,SIT,SNWD No — RHF AICEN,VICEN,VSNON

Exp. 5 SIT,SNWD Yes — EAKF AICEN,VICEN,VSNON

Exp. 6 SIT,SNWD,SIST Yes — EAKF AICEN,VICEN,VSNON

Figure 1. Daily total Arctic (A) sea ice area, (B) sea ice volume, and (C) snow volume from CICE5 free forecast simulations. Each gray line

represents an individual ensemble member, black line represents the ensemble mean, and the red line represents the truth member. The truth

member is a randomly selected ensemble member. Daily biases of the total Arctic (A) sea ice area, (B) sea ice volume, and (C) snow volume

where the black line represents the ensemble mean difference compared to the truth. The black dashed line is the zero reference line. The

free forecast period is for the year 2013.
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Figure 2. An example of the spatial locations of assimilated (A) sea ice area, (B) sea ice thickness,(C) snow depth and (D) sea ice surface

temperature observations. Colorfill is the ensemble mean of the sea ice area and the dots are the observation locations along with their

associated value.
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Figure 3. Daily biases of the Arctic total (A) sea ice area, (B) sea ice volume, and (C) snow volume from the free forecasts and experiments

1–3. Gray dashed lines are the zero reference line.
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Figure 4. The (A) IIEE, (B) MAB, and (C) RMSE of sea ice area, sea ice volume and snow volume from the free forecast and experiments

1–3. Each index is computed using the ensemble mean and over the entire cycling period. Dots represents an pairs of experiments that are

significantly different from a different experiment using a student t-test. Dot colors correspond to the different experiments.
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Figure 5. Ensemble mean spatial biases of (A) SIC, (B) VICE, and (C) VSNO averaged over May–June for the free forecast and experiments

1–3. Stippling represents significant biases at the 95% confidence interval using a Welch’s t-test. The black dashed line is the sea ice edge

(0.15 SIC).

.
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Figure 6. Normalized spatial analysis increments of (A) SIC, (B) VICE, and (C) VSNO averaged over May–June for experiments 1–3.

Analysis increments of SIC, VICE, and VSNO were normalized using the largest absolute value from across the three experiments. The

black dashed line is the sea ice edge (0.15 SIC).
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Figure 7. Prior ensemble mean (blue line) time series of SIC for experiments using (A,B) small initial ensemble spread and (C,D) large

initial ensemble spread. Each experiment was completed with prior inflation (A,C) turned off and (B,D) turned on. The red line represents

the average observation value over the cycling period. The black line represents the true value over the cycling period.
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Figure 8. Same as Figure 3 but for experiments 3–6.
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Figure 9. Same as Figure 4 but for experiments 3–6.
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Figure 10. Same as Figure 5 but for experiments 3–6.
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Figure 11. Panel (A): Ensemble mean daily biases of sea ice accumulated atmospheric heat fluxes for experiment 3 compared to the truth.

The plotted atmospheric heat flux components include: shortwave heat flux (black line), sensible heat flux (blue line), net longwave heat

flux (orange line), and latent heat flux (green line). Gray dashed line represents the zero reference line. Panel (B): Time series of sea ice

accumulated shortwave heat flux for experiment 3. The gray lines are the individual ensemble members, the black line is the ensemble mean,

and the blue line is the truth. Gray dashed line represents the zero reference line. Panel (C): Same as Panel (B) but for mean surface albedo

over sea ice. Panel (D): Daily biases of sea ice accumulated snowfall for experiment 3 compared to the truth. The gray lines are the individual

ensemble members, and the black line is the ensemble mean.
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Figure 12. Panel (A): Daily correlations between perturbed CICE parameters and total snow volume over the Arctic. Correlations are

computed using a Spearman’s rank correlation method where both the raw correlations (Raw) and significant correlations with confidence at

99% (Sig.) are shown. Panel (B): Same as Panel (A) but for total snow melt over the sea ice in the Arctic. Panel (C): Sorted perturbed Rsnw

parameter values for each ensemble member. Red bar indicates the truth member. Black line is the median and the two dash lines represent

the interquartile range.
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